
The Ramifications of
Mechanized Localizations within Data Structures

Shengyi Wang� Qinxiang Cao� Asankhaya Sharma� Aquinas Hobor:,�

School of Computing� and Yale-NUS College:, National University of Singapore; Princeton University�

Abstract
We develop a way to mechanically verify realistic programs that
manipulate data structures with intrinsic sharing such as heap-
represented graphs. We upgrade Hobor and Villard’s theory of ram-
ification to better support modified program variables and existen-
tial quantifiers in assertions. We develop a modular and general
setup for reasoning about mathematical graphs and show how to
connect this setup to a general theory of graphs in separation logic.
We connect our development to two large verification tools, the
Verified Software Toolchain and HIP/SLEEK, and use these tools
to mechanically verify several canonical graph algorithms.

1. Introduction
Over the last fifteen years great strides have been made in automat-
ing verifications of programs that manipulate tree-like data struc-
tures using separation logic (Berdine et al. 2005; Chin et al. 2010;
Jacobs et al. 2011; Chlipala 2011; Bengtson et al. 2012; Appel et al.
2014). Unfortunately, verifying programs that manipulate graph-
like data structures (i.e. structures with intrinsic sharing) has been
more challenging. Indeed, verifying such programs was formidable
enough that a number of the early landmark results in separation
logic devoted substantial effort to verify single examples such as
Schorr-Waite (Yang 2001) with pen and paper—avoiding the addi-
tional challenges inherent in mechanized reasoning.

In recent years, Hobor and Villard introduced the concept of
ramification as a kind of proof pattern or framework to verify
graph-manipulating programs on pen and paper (Hobor and Villard
2013). The major focus of this paper is to develop methods to verify
realistic graph programs in a mechanized context. We do so by
upgrading the theory of ramification and by developing a general
and modular library for graph-related reasoning in separation logic.
We incorporate our approach into two sizeable separation logic-
based verification tools: the Floyd system of the Verified Software
Toolchain (VST) (Appel et al. 2014) and the HIP/SLEEK program
verifier (Chin et al. 2010). VST and HIP/SLEEK inhabit quite
different points in the design space for verification tools, with VST
primarily focused on heavily human-guided verifications with an
emphasis on end-to-end machine-checked proofs, and HIP/SLEEK
focusing on more automation. Despite these differences, the vast
majority of our Coq code base is shared between them, giving us
hope that our work will be applicable to other verification tools.

[Copyright notice will appear here once ’preprint’ option is removed.]

The structure of our paper is as follows:

§2 We verify a graph marking algorithm and explain why such al-
gorithms are easier to verify using relations instead of functions.
We introduce localization blocks as a new notation for ramifi-
cation. We upgrade Hobor and Villard’s RAMIFY rule to han-
dle both modified program variables and existential quantifiers
more gracefully.

§3 We develop a general mechanization of mathematical graphs
powerful enough to support realistic verification.

§4 We suggest that the standard Knaster-Tarski fixpoint (Tarski
1955) cannot define a usable separation logic graph predicate.
We propose a better definition for general spatial graphs that
still enjoys a “recursive” fold/unfold. We prove general theo-
rems about spatial graphs in a way that can be utilized in mul-
tiple flavors of separation logic, such as the logics contained in
VST and HIP/SLEEK.

§5 We explain how we integrated ramification into VST by de-
veloping two new Floyd tactics, localize and unlocalize.
We discuss three additional VST-certified examples: marking a
DAG, pruning a graph into a spanning tree (e.g. for disposal),
and making a structure-preserving copy of a graph.

§6 We explain how we modified HIP/SLEEK to introduce rami-
fications when programs modify data structures with intrinsic
sharing and to automatically discharge the associated obliga-
tions using Coq-verified external lemmas.

§7 We document some statistics related to our development.

§8 We discuss related work.

§9 We discuss directions for future work and conclude.

All of our results are machine checked.

2. Localizations
In Figure 1 we put the code and proof sketch of the classic mark

algorithm that visits and colors every reachable node in a heap-
represented graph. The mark algorithm is good to start with because
it is complex enough to require some care to verify while being
simple enough that the invariants are straightforward. In §5.2 we
will discuss more complex examples that e.g. add/change/remove
edges and/or vertices.

The code in Figure 1 is written in Clight (Blazy and Leroy
2009), an input language to the CompCert certified compiler (Leroy
2006), which compiles our code exactly as written. The paper-
format verification sketch for mark in Figure 1 is extracted from a
“Floyd” proof in VST (Appel et al. 2014), with only minor cleanup
to aid the presentation. Accordingly, there is an unbroken certified
chain from our specification of mark all the way to the assembly
code. In §6 we use HIP/SLEEK (Chin et al. 2010) to verify a Java

1 2016/7/20

1 struct Node {int _Alignas(16) m;
2 struct Node * _Alignas(8) l;
3 struct Node * r; };
4

5 void mark(struct Node * x) { // tgraphpx, γqu
6 struct Node * l, * r; int root_mark;
7 if (x == 0) return;
8 // tgraphpx, γq ^ Dm, l, r. γpxq � pm, l, rqu
9 // tgraphpx, γq ^ γpxq � pm, l, rqu

10 // × tx ÞÑ m,�, l, ru
11 root_mark = x -> m;
12 // Ö tx ÞÑ m,�, l, r ^m � root_marku
13 // tgraphpx, γq ^ γpxq � pm, l, rq ^m � root_marku
14 if (root_mark == 1) return;
15 // tgraphpx, γq ^ γpxq � p0, l, rqu
16 // × tx ÞÑ 0,�, l, r ^ γpxq � p0, l, rqu
17 l = x -> l;
18 �p7q r = x -> r;
19 x -> m = 1;
20 // Ö tx ÞÑ 1,�, l, r^ γpxq � p0, l, rq ^ Dγ1. mark1 pγ, x, γ1qu
21 // tDγ1. graphpx, γ1q ^ γpxq � p0, l, rq ^mark1 pγ, x, γ1qu
22 // tgraphpx, γ1q ^ γpxq � p0, l, rq ^mark1 pγ, x, γ1qu
23 // × tgraphpl, γ1qu
24 �p8q mark(l);
25 // Ö tDγ2. graphpl, γ2q ^markpγ1, l, γ2qu

26 //

"
Dγ2. graphpx, γ2q ^ γpxq � p0, l, rq ^
mark1 pγ, x, γ1q ^markpγ1, l, γ2q

*

27 //

"
graphpx, γ2q ^ γpxq � p0, l, rq ^
mark1 pγ, x, γ1q ^markpγ1, l, γ2q

*

28 // × tgraphpr, γ2qu
29 �p8q mark(r);
30 // Ö tDγ3. graphpr, γ3q ^markpγ2, r, γ3qu

31 //

"
Dγ3. graphpx, γ3q ^ γpxq � p0, l, rq ^
mark1 pγ, x, γ1q ^markpγ1, l, γ2q ^markpγ2, r, γ3q

*

32 } // tDγ3. graphpx, γ3q ^markpγ, x, γ3qu

graphpx, γq ô px � 0^ empq _
Dm, l, r. γpxq � pm, l, rq ^ x mod 16 � 0^

x ÞÑ m,�, l, r Y� graphpl, γq Y� graphpr, γq
(1)

mark1 pγ, x, γ1q
∆
� @v.γ1pvq �

$'&
'%
p1, l, rq

when x � v ^

γpvq � p0, l, rq

γpvq otherwise

v1
γ
;0 v2

∆
� Dl, r. γpv1q � p0, l, rq ^ v2 P tl, ru

v1

γ

;�
0 v2

∆
� reflexive, transitive closure of

γ
;0

markpγ, x, γ1q
∆
� @v.γ1pvq �

$'&
'%
p1, l, rq when x

γ

;�
0 v ^

γpvq � p�, l, rq

γpvq otherwise

Figure 1. Clight code and proof sketch for bigraph mark.

version of mark; the program invariants generated by HIP/SLEEK
are slightly different due to HIP/SLEEK’s heavier automation.

The specification we certify (lines 5 and 32) is

tgraphpx, γqu mark(x) tDγ1. graphpx, γ1q ^markpγ, x, γ1qu

The specification is for full functional correctness, stated using
mathematical graphs γ; until §3 consider γ to be a function that
maps a vertex v P V to triples pm, l, rq, wherem is a “mark” bit (0
or 1) and tl, ru � V Zt0u are the neighbors of v. The spatial graph
predicate describes how the mathematical graph γ is implemented
in the heap. Until §4 it is enough to know that graph satisfies the
fold/unfold relationship in equation (1), located just under the code
in Figure 1.

σ (P �Q
∆
� Dσ1, σ2. σ1 ` σ2 � σ ^

pσ1 (P q ^ pσ2 (2q

σ (P Y� Q
∆
� Dσ1, σ2, σ3. σ1 ` σ2 ` σ3 � σ ^

pσ1 ` σ2 (P q ^ pσ2 ` σ3 (Qq

σ (P ��� Q
∆
� @σ1, σ2. σ1 ` σ � σ2 ^

pσ1 (P q ñ pσ2 (Qq

σ (P ��#� Q ∆
� Dσ1, σ2. σ1 ` σ � σ2 ^

pσ1 (P q ^ pσ2 (Qq

Figure 2. Separation logic connectives; ` is the join operation on
states, usually some kind of disjoint union on heaps

This fold/unfold relationship deserves attention. First, as we
explain in §4.1, it is probably a mistake to write (1) as a definition
using ∆

� rather than as a biimplication using ô. Second, (1) uses
the “overlapping conjunction” Y� of separation logic; informally
P Y� Q means that P and Q may overlap in the heap (e.g., nodes
in the left subgraph can also be in the right subgraph or even be
the root x). The presence of the unspecified sharing indicated by
theY� connective is exactly why graph-manipulating algorithms are
so hard to verify (e.g., it is hard to apply the FRAME rule). The
standard semantics of the separation logic connectives used in this
paper are in Figure 2. Third, (1) illustrates how industrial-strength
settings complicate verification. Lines 1–3 define the data type
Node used by mark. The _Alignas(n) directives tell CompCert
to align fields on n-byte boundaries. As explained in §4.2, this
alignment is necessary in C-like memory models to prove fold-
unfold (1), which is why (1) includes an alignment restriction
x mod 16 � 0 and an existentially-quantified “blank” second field
for the root x ÞÑ m,�, l, r.

Notice that the postcondition of mark is specified relationally,
i.e. tDγ1. graphpx, γ1q ^ markpγ, x, γ1qu instead of functionally,
i.e. tgraph

�
x,markpγ, xq

�
u. In the first case mark is a relation

that specifies that γ1 is the result of correctly marking γ from x,
whereas in the second mark is a function that computes the re-
sult of marking γ from x. For both theoretical and practical reasons
a relational approach is better. Theoretically, relations are prefer-
able because they are more general. For example, relations allow
“inputs” to have no “outputs” (i.e. be partial) or alternatively have
many outputs (i.e. be nondeterministic). Our graph copy algorithm
is specified nondeterministically to avoid specifying how malloc

allocates fresh blocks of memory. Relations are also preferable to
functions because they are more compositional. We take advantage
of compositionality by using markpγ, x, γ1q ^ . . . to specify both
our “spanning tree” and “graph copy” algorithms in §5.2, which
also mark nodes while carrying out their primary task.

Practically, it is painful to define computational functions over
graphs in a proof assistant like Coq, and portions of this pain are
overkill. For example, Coq requires that all functions terminate, a
nontrivial proof obligation over cyclic structures like graphs, but
our verification of mark is only for partial correctness. Defining
relations is much easier because e.g. one can use quantifiers and
does not have to prove termination. The mark and mark1 relations
we use are defined straightforwardly at the bottom of Figure 1.

Turning to the body of the verification (lines 6–31), readers
may already have noticed our new notation: blocks of proof sketch
bracketed by the symbols × and Ö, such as lines 10–12. We call
a bracketed set of lines like this a “localization block”; localization
blocks were inspired by our new localize × and unlocalize

Ö tactics in Floyd (§5). The intuitive idea is that we zoom in
from a larger “global” context to a smaller “local” one. After
verifying some commands locally to arrive at a local postcondition,

2 2016/7/20

we zoom back out to the global context. Although we do not do so
in Figure 1, localization blocks can safely nest.

In lines 10–12, imagine unfolding the graph predicate in line 9
using equation (1) and then zooming in to the root node x for
lines 10–12, before zooming back out in line 13.

To define localization blocks formally we need to first under-
stand the FRAME and RAMIFY rules.

2.1 Frames and ramifications are localizations
The key rule of separation logic is FRAME (Reynolds 2002):

FRAME
tP u c tQu

tP � F u c tQ � F u
F IGNORES ModVarpcq

The reason FRAME is so important is because it enables local verifi-
cations. That is, a verifier can focus on the portions of the heap that
are relevant to command c and “frame away” the rest. The side con-
dition “F ignores ModVarpcq” relates to modified program vari-
ables and will be discussed in §2.2.

Hobor and Villard observed that FRAME is bit rigid because
it forces verifiers to split program assertions into syntactically �-
separated parts (Hobor and Villard 2013). This rigidity is partic-
ularly unpleasant when verifying programs that manipulate data
structures with intrinsic unspecified sharing such as DAGs and
graphs. Hobor and Villard proposed the RAMIFY rule to circum-
vent this rigidity:

RAMIFY
tL1u c tL2u G1 $ L1 � pL2 ��� G2q

tG1u c tG2u

pL2 ��� G2q
IGNORES

ModVarpcq

That is, we can verify a “global” specification tG1u c tG2u by
combining a “local” specification tL1u c tL2u with a ramifica-
tion entailment G1 $ L1 � pL2 ��� G2q. This entailment uses the
“magic wand” operator��� of separation logic1 to express a notion
of “substate update”: inside G1 replace L1 with L2 to reach G2.
Essentially the ramification entailment ensures that the change in
state specified locally fits properly into the global context. In ex-
change for proving the ramification entailment, a verifier can use
RAMIFY at any time, i.e. they need not worry about syntactically
matching their assertions with the � in the FRAME rule. Although
the ramification entailments can appear difficult, Hobor and Villard
observed that in many practical cases they can be handled easily
using a “ramification library”.

We are now ready to give a formal meaning to the “localization”
pattern employed in Figure 1. When we write:

1 // tG1u
2 // × tL1u
3 �piq c1; ... ; cn;
4 // Ö tL2u
5 // tG2u

we mean apply RAMIFY with G1 $ L1 � pL2 ��� G2q. An advan-
tage of this notation is crystal clarity on the predicates used in the
ramification entailment. For convenience, the optional �piq spec-
ification can reference an equation or lemma number that solves
the ramification entailment. For example, in Figure 1 line 18 ref-
erences Equation (7) whereas we omit � around line 11 since the
heap is unchanged and so the entailment is straightforward. If we
wish to save vertical space we can compress the line pairs 1–2 and
4–5 to the single lines tG1u × tL1u and tG2u Ö tL2u without
sacrificing clarity.

Hobor and Villard pointed out that RAMIFY implies FRAME
(modulo the modified program variables issue we fix in §2.2),
meaning that our notation can clarify uses of FRAME as well. This

1��� is the adjunct of �, i.e. pP �Q $ Rq ô pP $ Q ��� Rq.

is particularly useful in multi-line contexts with nontrivial F , for
which the current popular notation to express FRAME involves a
liberal use of “. . . ”, e.g.:

Old notation:

1 // tP1 � F1 � F2 � F3u
2 c1;
3 // tP2 � . . .u
4 c2;
5 // tP3 � . . .u
6 c3;
7 // tP4 � F1 � F2 � F3u

New notation:

// tP1 � F1 � F2 � F3u × tP1u
c1;

// tP2u
c2;

// tP3u
c3;

// tP4 � F1 � F2 � F3u Ö tP4u

2.2 The program variable bugaboo
FRAME’s side condition “F ignores ModVarpcq” can be defined
in two ways. In the more traditional syntactic style, it means that
FreeVarpF qXModVarpcq � H. By “syntactic style” we mean that
the side condition is written using a function FreeVarpF q that takes
an arbitrary formula and returns the set of free variables within
that formula. To define this FreeVarpF q function we need a fixed
inductive syntax for formulas. In contrast, in this paper we follow
a “semantic style” in which formulas are not given a fixed syntax
in advance but can be defined semantically on the fly using an
appropriate model (Appel et al. 2014). In a semantic style, the side
condition on the frame rule is defined as:

σ
S
� σ1

∆
� σ and σ1 coincide everywhere except S

P ignores S ∆
� @σ, σ1. σ

S
� σ1 ñ

pσ (P q ô pσ1 (P q

That is, we consider two program states σ and σ1 equivalent up to
program variable set S when they agree everywhere except on the
values of S (typically, a state σ is a pair of a heap h and program
variables ρ). A predicate P ignores S when its truth is independent
of all program variables in S.

Now consider using ramification to verify this program:

1 // tx � 5^Au × tx � 5^Bu
2 ...; x = x + 1; ...;
3 // tx � 6^Du Ö tx � 6^ Cu

Suppose that the other (elided) lines of the program make localiza-
tion desirable, even though it is overkill for a single assignment.
The key issue is that the program variable x appears in all four po-
sitions in the ramification entailment

G1hkkkkkikkkkkj
px�5^Aq $

L1hkkkkkikkkkkj
px�5^Bq �

� L2hkkkkkikkkkkj
px�6^ Cq ���

G2hkkkkkikkkkkj
px�6^Dq

�
One problem is that L2 ��� G2 does not ignore the modified pro-
gram variable x, preventing us from applying RAMIFY. Intuitively,
the side condition on the RAMIFY rule is a bit too strong since it
prevents us from mentioning variables in the postconditions that
have been modified by code c.

We could try to weaken the side condition in RAMIFY to�
FreeVarpG2q XModVarpcq

�
� FreeVarpL2q, the idea being that

information about modified program variables mentioned in the
local postcondition L2 can be carried to the global postcondition
G2. Unfortunately, this idea is unsound because x cannot simulta-
neously be both 5 and 6, i.e. the above entailment is vacuous. A
better idea is:

RAMIFY-P (PROGRAM VARIABLES)
tL1u c tL2u G1 $ L1 � JcKpL2 ��� G2q

tG1u c tG2u

The ramification entailment now incorporates a new (univer-
sal/boxy) modal operator JcK. The intuitive meaning of JcK is that
program variables modified by command c can change value inside
its scope. Note that it is vital that L2 appears as the antecedent

3 2016/7/20

of a (spatial) implication since the change in program variables is
universally quantified. This means that if we want to say anything
specific about modified program variables in the global postcondi-
tion G2 then we had better say something about them in the local
postcondition L2.

Let us return to our earlier entailment:
px � 5^Aq $ px � 5^Bq �
J...; x = x + 1; ...;K

�
px � 6^ Cq ��� px � 6^Dq

�
Since x is modified, its value can change from the first line, in which
x must be 5, to the second, in which x must be 6.

Here is the definition of JcK, writing xcy for ModVarpcq:

σ (JcKP ∆
� @σ1. pσ

xcy
� σ1q ñ pσ1 (P q

In other words, JcK is exactly the universal modal operator 2 over
the relation that considers equivalent all states that differ only on

program values modified by c. Since
xcy
� is an equivalence relation,

JcK forms an S5 modal logic.
Note that RAMIFY-P has no free variable side condition, which

is unnecessary because @P. JcKP ignores ModVarpcq. However,
in practice this side condition reappears because to actually prove
a ramification entailment containing JcK one typically applies the
following SOLVE RAMIFY-P rule:

SOLVE RAMIFY-P
G1 $ L1 � F F $ L2 ��� G2

G1 $ L1 � JcKpL2 ��� G2q
F IGNORES ModVarpcq

We can handle the JcK by breaking apart the single entailment into
a pair. Using two entailments allows modified program variables
to change between the preconditions and postconditions2. To con-
nect the pair, we must choose a suitable predicate F that ignores
modified variables in c.

With RAMIFY-P and SOLVE RAMIFY-P we can prove the
FRAME rule with its canonical side condition as follows:

P � F $ P � F F $ Q ��� pQ � F q

P � F $ P � JcK
�
Q ��� pQ � F q

� F IGNORES
ModVarpcq

tP u c tQu

tP � F u c tQ � F u

This justifies our point in §2.1 that our new localization notation
can also be used for frames.

Choosing F in a concrete setting is a little delicate. For our
example, we can just substitute3 x for 6 in L2 ��� G2:

F
∆
� p6 � 6^ rx ÞÑ 6sCq ��� p6 � 6^ rx ÞÑ 6sDq

The first premise of SOLVE RAMIFY-P is

x � 5^A $ px � 5^Bq ��
p6 � 6^ rx ÞÑ 6sCq ��� p6 � 6^ rx ÞÑ 6sDq

�
This entailment is the key proof that our localization was sound.
Generally speaking this entailment is solved by using a ramification
library (§4.3); as previously explained we sometimes use �pnq to
explicitly reference a library lemma.

Meanwhile, the second premise looks like this:
p6 � 6^ rx ÞÑ 6sCq ��� p6 � 6^ rx ÞÑ 6sDq $

px � 6^ Cq ��� px � 6^Dq
(2)

Although it may not be readily apparent, this is in fact a tautology
using pP �Q $ Rq ô pP $ Q ��� Rq.

2 Entailment procedures for separation logic may prefer to useF �L2 $ G2

as the second premise of SOLVE RAMIFY-P because it is free from���.
3 In a semantic setting, substitution is defined with a modal operator rather
than textual replacement, but the net effect is the same.

This strategy is sufficient to handle all of the localization blocks
in Figure 1. For example, in lines 16–20, choose F ∆

��
x ÞÑ 1,�, l, r ^ γpxq � p0, l, rq ^ Dγ1.mark1 pγ, x, γ1q

�
���

�
Dγ1. graphpx, γ1q ^ γpxq � p0, l, rq ^mark1 pγ, x, γ1q

�
Note the use of the metavariables l and r rather than l and r in F ,
added to the metacontext in lines 8–9 using Floyd’s EXISTENTIAL
EXTRACTION rule (Floyd 1967):

EXISTENTIAL EXTRACTION
@x.

�
tP u c tQu

�
tDx.P u c tDx. Qu

Pen and paper Hoare proofs are often a little casual with existen-
tials, e.g. omitting line 8; we wrote it because we wanted to be clear
that the metavariables l and r were properly “in scope” over the lo-
calization blocks.

2.3 The existential ogre
What happens when we cannot calculate a substitution using
globally-scoped metavariables? Consider the following:

1 // tAu × tBu
2 ...; x = malloc(sizeof(int));
3 if (x == 0) then y = 0 else y = 1; ...;

4 // Ö t
�
px ÞÑ � ^ y � 1q _ px � 0^ y � 0q

�
� Cu

5 // tpy � 1^D1q _ py � 0^D2qu

Within a localization block we call the nondeterministically spec-
ified function malloc and use the program variable y as a flag to
keep track of whether the allocation succeeded. Call the postcondi-
tions in lines 4 and 5 just above L2 and G2 respectively.

Now the choice of F is not very straightforward because we do
not know the values to substitute for x or y:

rx ÞÑ?sry ÞÑ?spL2 ��� G2q (3)
We can avoid this roadblock as follows. First, rewrite the

postconditions in lines 4 and 5 just above to introduce fresh
existentially-quantified variables x and y and bind them to x and y:

4 // tL2u
5 // Ö tDx, y. x � x^ y � y^ rx ÞÑ xsry ÞÑ ysL2u
6 // tDx, y. x � x^ y � y^ rx ÞÑ xsry ÞÑ ysG2u
7 // tG2u

Call these equivalent postconditions L1
2 (line 5) and G1

2 (line 6).
Next apply RAMIFY-P and SOLVE RAMIFY-P with F ∆

�

@x, y. rx ÞÑ xsry ÞÑ yspL2 ��� G2q

In other words, replace the “?” from (3) with universally-quantified
metavariables x and y scoped over the entire���.

Now consider the first premise of SOLVE RAMIFY-P:

G1$L1�F A $ B � @x, y. rx ÞÑ xsry ÞÑ yspL2 ��� G2q

This is essentially the same ramification entailment we had before,
and so the general strategy is to apply the ramification library §4.3.
The second premise is more interesting:

F $
�
@x, y. rx ÞÑ xsry ÞÑ yspL2 ��� G2q

�
$

pL1
2 ��� pDx, y. x � x^ y � y^ rx ÞÑ xsry ÞÑ ysL2q ���

G1
2q pDx, y. x � x^ y � y^ rx ÞÑ xsry ÞÑ ysG2q

Like equation (2), this turns out to also be a tautology, albeit a more
complicated one. Since L2 and G2 are equivalent to L1

2 and G1
2,

we can therefore verify the specification all the way from A to G2

despite the presence of the existentially-quantified modifications to
the program variables x and y.

We package all of this reasoning into the following rule:
RAMIFY-PQ (PROGRAM VARIABLES AND QUANTIFIERS)
tLu c tDx. L2u G1 $ L1 � JcK

�
@x. pL2 ��� G2q

�
tG1u c tDx. G2u

4 2016/7/20

Proof of RAMIFY-P from FRAME and CONSEQUENCE:

G1 $ L1 � JcKpL2 ��� G2q

tL1u c tL2u

tL1 � JcKpL2 ��� G2qu c tL2 � JcKpL2 ��� G2qu
p1q

xcy
� is reflexive

JcKpL2 ��� G2q $ L2 ��� G2
p2q

L2 � JcKpL2 ��� G2q $ G2
p3q

tG1u c tG2u

p1q @P. JcKP ignores FreeVarpcq p2q axiom T of modal logic p3q pP �Q $ Rq ô pP $ Q ��� Rq

Proof of RAMIFY-PQ from RAMIFY-P:

tL1u c tDx. L2u

G1 $ L1 � JcK
�
@x. pL2 ��� G2q

�

...
@x. pL2 ��� G2q $ pDx. L2q ��� pDx. G2q

p1q

JcK
�
@x. pL2 ��� G2q

�
$ JcK

�
pDx. L2q ��� pDx. G2q

� p2q
L1 � JcK

�
@x. pL2 ��� G2q

�
$ L1 � JcK

�
pDx. L2q ��� pDx. G2q

�
G1 $ L1 � JcK

�
pDx. L2q ��� pDx. G2q

�
tG1u c tDx. G2u

p1q tautology using pP �Q $ Rq ô pP $ Q ��� Rq p2q reduction using modal axioms K and N

Figure 3. Proofs of RAMIFY-P and RAMIFY-PQ

Essentially RAMIFY-PQ allows us to shift existential variables
from the local context to the global one in a smooth way, especially
in conjunction with the following rule:

SOLVE RAMIFY-PQ
G1 $ L1 � F F $ @x. pL2 ��� G2q

G1 $ L1 � JcK
�
@x. pL2 ��� G2q

� F IGNORES
ModVarpcq

Since we use a relational style to verify graph algorithms (e.g. in
Figure 1), existentials appear frequently and a smooth treatment is
very helpful in practice. To make this point a little more clearly we
were more explicit about existentials in e.g. lines 22–26 than is typi-
cal in pen-and-paper proofs. However, fortified by the RAMIFY-PQ
rule, we could very reasonably have e.g. written line 25 as

25 // Ö tgraphpl, γ2q ^markpγ1, l, γ2qu

and omitted line 26 entirely.
Although our technique to handle modified program variables

is rather intricate, it can be done mechanically/automatically (§5).
Our localize and unlocalize tactics use RAMIFY-PQ since it is
the most general rule.

2.4 Soundness of our rules

In Figure 3 we sketch the soundness proofs for RAMIFY-P and
RAMIFY-PQ. RAMIFY-P requires only FRAME and CONSEQUENCE
to prove, along with some basic properties of JcK. RAMIFY-PQ is
built on top of RAMIFY-P with some complicated logical maneu-
vers. Systems of separation logic that do not wish to add JcK to
their logical formulae might consider adding a rule that packages
the RAMIFY-PQ and SOLVE RAMIFY-PQ rules together.

3. A framework for graph theory
To enable the verification of full functional correctness of graph al-
gorithms we need a way to reason about mathematical graphs. To
allow such verifications to be mechanized without undue pain we
must take care to develop a modular and general-purpose frame-
work for such mathematical graphs.

3.1 Structure of the mathematical graph framework

Figure 4 gives the overall architecture of how our graphs are con-
structed. The most basic kind of graph is PreGraph, out of which
we build LabeledGraphs, and which in turn are used to build Gen-
eralGraphs. Each kind of graph has some associated lemmas, and
each kind inherits the lemmas of the previous kind. The dashed
box represents a “plugin” system for attaching arbitrary properties
to LabeledGraphs and will be discussed more later.

PreGraph LabeledGraph GeneralGraph
Label

Soundness
Condition

Property

Property Lemmas

PreGraph
Lemmas

LabeledGraph
Lemmas

GeneralGraph
Lemmas

Dependence Inheritance Instantializes

Figure 4. Structure of the Mathematical Graph Library

Valid node

Invalid node

Valid edge

Invalid edge

Figure 5. A PreGraph with invalid nodes and edges.

Pregraphs. A PreGraph is a hextuple pV,E, φV , φE , s, tq, where
V and E are the underlying carrier set of vertices and edges. Not
every v P V or e P E is actually “in” the graph, so we provide the
predicates φV and φE to classify vertices and edges as valid (in) or
not (out). Finally, s and e : E Ñ V are functions that map an edges
to their source and destination respectively; this model means that
PreGraphs are directed rather than undirected. By design, there are
no requirements for e.g. how the validities of edges and vertices
relate. As shown in Figure 5, a PreGraph can contain invalid nodes
and edges in an arbitrary configuration.

The advantage of designing a graph type that can reason about
missing vertices and edges is because some of our later definitions
need such flexibility. Consider the difference of two graphs, γ1�γ2.
Even if both of these graphs are “well-formed” to begin with, in the

5 2016/7/20

sense that valid nodes have only valid edges and vice versa, their
difference may not since there may be dangling edges pointing to
the now-removed vertices of γ2.

Many basic graph concepts such as path, reachability, and sub-
graph are defined on PreGraphs. Informally a path is a list of nodes
connected by edges. Formally it is more convenient to define a path
as an ordered pair pn, lq where n is a node and l is a list of edges.
A valid path requires n to be the source of the first edge of l (if one
exists) and moreover requires l to be “well chained”. That is, the
destination of one edge in l must be the source of the next edge.
The list l can be null to represent an empty path starting and ending
at the node n. We prefer this encoding as opposed to some others
(e.g. a list of edges) because the definitions of important concepts
like reachability are cleaner.

The most important definition on PreGraph is the concept of
reachability. We use the notation γ |ù Ln1

n2
pP q to mean that we

can reach n2 from n1 via the path L in PreGraph γ, and moreover
that every node in L satisfies predicate P . This notation, along with
some derived ones such as

γ |ù n1
P
ÝÑ n2

∆
� DL, γ |ù Ln1

n2
pP q,

γ |ù n1 ; n2
∆
� DL, γ |ù Ln1

n2
pTrueq

form the bedrock of nearly every nontrivial predicate about and
relation between graphs. We write reachablepγ, vq to mean the set
of vertices reachable in γ from a given vertex v.

In §4 we will tie mathematical graphs γ to a spatial graph pred-
icate graphpx, γq. As we will see, graph “owns” only the spatial
portion of γ that is reachable from x even though γ may contain
other nodes. Accordingly, when we reason about graphpx, γq, it is
natural to want to describe the reachable portion of γ. In fact we
generalize this idea into two concepts: the subgraph of γ satisfying
an arbitrary predicate P , written γ ÓP , and the relaxed subgraph,
written γ Ò P , which contains the all of the subgraph plus some
additional edges. In particular, γ Ó P contains exactly the vertices
satisfying P and only the edges whose source and destination both
satisfy P . The relaxed subgraph γ Ò P adds the additional edges
whose source satisfies P , even though their destination may not.
We can use these definitions to, for example, extract the subgraph
or relaxed subgraph reachable from a vertex v by writing e.g.

γ Ópλv1.γ |ù v ; v1q

LabeledGraph. PreGraph and its derived properties (reachabil-
ity, subgraph, etc) are inadequate for real program verification, even
though many basic lemmas can already be proved about them.
However, when reasoning about the concrete graphs manipulated
by various algorithms, we usually need to add a notion of labels on
vertices and/or edges, such as the “mark bit” used in Figure 1.

GeneralGraph. Much more interesting is the concept of Gen-
eralGraph, which augments a LabeledGraph by adding a user-
specified soundness condition. In Figure 4 this soundness condi-
tion is highlighted by a dashed border. These “plugins” can specify
many different kinds of properties. Each property, in turn, can be
used to prove many property-specific lemmas, all of which then
apply to the instantiating GeneralGraph.

3.2 Graph plugins
Many theorems about graphs require certain properties, such as:

• A graph may be finite (FiniteGraph), meaning that both the set
of valid vertices and the set of valid edges are finite.

• A less restrictive property is locally finite (LocalFiniteGraph),
in which each vertex has a finite number of neighbors. Locally
finite graphs are useful, for example, when we wish to reason
about algorithms that process vertices by cycling through neigh-
bors, such as breadth-first search.

Lemmas of Property 1 and 2

Property 1
Lemmas

Property 2
Lemms

Property 1 Property 2 Property 1^

Property 2

Prop. 1 Lemmas
Prop. 2 Lemmas

Prop. 1^2 Lemmas

ÞÑ

Figure 6. Combining plugins

• More subtly, consider that many real data structures use special
null values to represent unused edges. The MathGraph prop-
erty introduces this concept—i.e. some invalid nodes that are
none-the-less allowed to appear as destinations for valid edges.

• Many of our verified algorithms have only two outgoing edges
per node. The BiGraph property lets us reason about this com-
mon special case in a convenient manner.

We have a number of other properties in our codebase, but these
four are the most important basic ones.

We use Coq’s typeclass system to manage our plugins in a
smooth manner. Essentially the typeclass system enables the dia-
gram in Figure 6. The idea is that if we have two properties, each
of which come with some already-proved lemmas, we can com-
bine these plugins to prove the emergent lemmas that result from
the combination, and then treat the new combination as a new plu-
gin. Since the system is compositional, we can easily mix many
different properties together. For example, we compose BiGraph,
MathGraph, and FiniteGraph together into a new plugin we call
BiMaFin. BiMaFin is the actual soundness condition used to ver-
ify the program in Figure 1.

One interesting example of this process is the following lemma:

LEMMA 1 (Computable reachability).

@γ, x.MathGraph γ ñ LocalFiniteGraph γ ñ

reachablepγ, xq is finite ñ

we can compute a set S s.t.

@v. v P S ô γ |ù x; v.

The proof of this lemma is a bit subtle. To compute the reachable
set we need to design a decision procedure that explores the (poten-
tially cyclic) graph. Accordingly we implement a flavor of breadth-
first search, also keeping track of the nodes that we have explored
previously. Since nodes are explored in BFS order while reachabil-
ity is in some sense defined in DFS order, when we reach a node
n we must take some care to reconstruct a path from the origin to
n to satisfy the reachability property. The definition is also painful
because of Coq’s insistence that all computations terminate; we uti-
lized the techniques outlined by Chlipala to pacify Coq’s termina-
tion checker (Chlipala 2013).

3.3 Reasoning about relations between graphs
We apply our framework to define other structures and relations
between these structures (including graph), and then use them to
prove certain pure facts proposed by real verifications.

For example, we define DAG (directed acyclic graph) as a
PreGraph with an additional property: forall any x and y, if x
is reachable from y, then x � y or y is not reachable from x.
Similarly, we define tree by saying that for any reachable node n
there is a unique path from the root to n.

We already defined the relation markpγ, x, γ1q, used in the
graph marking algorithm, in Figure 1. Similarly, we define span for

6 2016/7/20

the spanning tree program and copy for the graph copy program.
These relations all capture how the graph has changed from before
to after the program execution. As previously mentioned, we reuse
mark and its related lemmas to prove facts about spanning tree and
graph copy because the latter two programs mark nodes as they
work. Accordingly, we can reuse the following fact:

@γ, x, n. γpxq � p0, v1, v2, . . . , vnq ñ mark1 pγ, x, γ1q ñ

markpγ1, v1, γ2q ñ markpγ2, v2, γ3q ñ � � � ñ

markpγn, vn, γn�1q ñ markpγ, x, γn�1q.

This is a general theorem for any LocalFiniteGraph, not just
BiGraph. In our framework, we aspire to prove theorems as gener-
ally as possible.

4. Defining and reasoning about spatial graphs
To prove the functional correctness of real graph-manipulating al-
gorithms implemented in a real language, we need to connect the
heap representation of graphs, the memory model of the program-
ming language, and the mathematical properties of graphs from §3.
The first of these turns out to be surprisingly subtle as we shall see
in §4.1 and §4.2. The main challenge for the others is to engineer a
framework that is generic enough and modular enough to be useful
in practice in a variety of settings; we cover it in §4.3.

4.1 Traditional fixpoints fail to define good graph predicates
Recursive predicates are ubiquitous in separation logic—so much
so that when a person writes the definition of a predicate as
P “∆
�” . . . P . . ., no one raises an eyebrow despite the dangers of

circularity in mathematics. Indeed, the vast majority of the time
there is no danger thanks to the magic of the Knaster-Tarski fixpoint
µT (Tarski 1955). Formally what is going on is instead of defining
P directly, one defines a functional FP

∆
� λP. . . . P . . . and then

defines P itself as P ∆
� µT FP . Assuming (as one typically does

without comment) that FP is covariant, i.e. pP $ Qq ñ pF P $
F Qq, one then enjoys the fixpoint equation P ô . . . P . . ., for-
mally justifying typically written pseudodefinition (“∆

�”).
Suppose we define a graph predicate graphT this way, e.g. along

the lines of the fold/unfold definition we used in Figure 1, i.e.

graphT px, γq
∆
� px � 0^ empq _ Dm, l, r. γpxq � pm, l, rq ^
x ÞÑ m, l, r Y� graphT pl, γq Y� graphT pr, γq

We have removed the alignment-related portions of equation (1)
to focus on a more serious issue, even though as we will explain
in §4.2 alignment concerns are also necessary for the fold/un-
fold relationship to hold in C-like memory models. The functional
needed to define graphT is covariant, so we can apply Knaster-
Tarski soundly. However, the resulting predicate can be hard to use.

Consider the following partial memory m for a toy machine:
address value
102 0
101 100
100 42

42

Clearly m (100 ÞÑ 42, 100, 0. But it seems also clear that
this memory represents a one-cell cyclic graph as illustrated in the
accompanying diagram, i.e. we want m (graphT p100, γ̂q, where
γ̂p100q � p42, 100, 0q. This is equivalent to wanting to be able
to prove 100 ÞÑ 42, 100, 0 $ graphT p100, γ̂q. Unfortunately,
as hinted at in Figure 7, this seems rather difficult to do so since
applying the natural proof techniques have only strengthened the
goal. In fact we do not know if this entailment is provable or
not, but the difficulties encountered in proving what “should be”
straightforward suggest that Knaster-Tarski should be treated with
caution when defining spatial predicates for graphs.

Part of the problem is that the recursive structure interacts very
badly withY�: if the recursion involved � then it would be provable,
by induction on the finite memory (each “recursive call” would be
on a strictly smaller subheap). This is why Knaster-Tarski works so
well with list, tree, and DAG predicates in separation logic. Note
that the other direction, graphT p100, γ̂q $ 100 ÞÑ 42, 100, 0, is
true but is not easy to prove, relying on the constructions in §4.2
and the fact that µT constructs the least fixpoint. In contrast,
graphT p100, γ̂q $ 100 ÞÑ 42, 100, 0 � J is very easy to prove.

Appel and McAllester proposed another fixpoint µA that is
sometimes used to define recursive predicates in separation logic
(Appel and McAllester 2001). This time the functional FP needs to
be contractive, which to a first order of approximation means that
all recursion needs to be guarded by the “approximation modal-
ity” � (Appel et al. 2007), i.e. our graph predicate would look like

graphApx, γq
∆
� px � 0^ empq _ Dm, l, r. γpxq � pm, l, rq ^
x ÞÑ m, l, r Y� �graphT pl, γq Y� �graphT pr, γq

As we will see in §6, the forward style of reasoning employed
by HIP/SLEEK is greatly aided when predicates are precise, i.e.

precisepP q
∆
� pσ1 (P q ñ pσ2 (P q ñ

pσ1 ` σ
1
1 � σq ñ pσ2 ` σ

1
2 � σq ñ σ1 � σ2

Unfortunately,�P is not precise for all P , so graphA is not precise
either. The approximation modality’s universal imprecision has
never been mentioned previously in the literature.

4.2 Defining a good graph predicate
We choose an alternative path. Rather than trying to define graph
directly as a recursive fixpoint, we will give it a flat structure and
then prove that it satisfies fold/unfold. Our path starts with the
iterated separating conjunction or “big star”, defined as follows:

�
tl1,l2,...,lnu

P
∆
� P pl1q � P pl2q � . . . � P plnq.

Notice that formally� is defined over a list rather than a set, and is
parameterized by a predicate P . It is natural to extend it to a set S
using an existentially-quantified duplicate-free list L as follows:

�
S
P

∆
� DL. pNoDup Lq ^ p@x. x in Lô x P Sq ^�

L
P

We use the same � notation since the concepts are similar, but the
existential can add a little pain since it means that we need to prove
that all choices of list L yield equivalent predicates.

We are now ready to give a good graph predicate:

graphpx, γq
∆
� �

vPreachpγ,xq
v ÞÑ γpvq (4)

Here γ is a GeneralGraph from §3.1 and “x ÞÑ γpxq” is a predicate
that describes how single nodes fit in memory; in Figure 1 it was

Dm, l, r. γpxq � pm, l, rq ^ x ÞÑ m,�, l, r ^ x mod 16 � 0

In general γ need not be a bigraph, but e.g. can have many edges.
Our definition of graph is flat in the sense that there is no ob-

vious way to follow the link structure recursively. Happily, we can
recover a general recursive fold/unfold, assuming our graph and
GeneralGraph give us the necessary properties. To state a general
fold/unfold lemma we need the iterated overlapping conjunction:

�
¤

l1,...,ln

P
∆
� P pl1q Y� . . .Y� P plnq

Now we can state the general fold/unfold as follows:

graphpx, γq ô x ÞÑ γpxq Y�
�

�
¤

nPneighborspγ,xq

graphpγ, nq
	

(5)

7 2016/7/20

100 ÞÑ 42, 100, 0 $ 100 ÞÑ 42, 100, 0Y� graphT p100, γ̂q

100 ÞÑ 42, 100, 0 $ γ̂p100q � p42, 100, 0q ^ 100 ÞÑ 42, 100, 0Y� graphT p100, γ̂q Y� graphT p0, γ̂q
p2q

100 ÞÑ 42, 100, 0 $ graphT p100, γ̂q
p1q

(1) Unfold graphT , dismiss first disjunct (contradiction), introduce existentials (which must be 42,100,0)
(2) simplify using P � emp %$ P and remove pure conjunct

Figure 7. An honest academic tries to prove a “simple” entailment

Step-Indexed Model Direct Model

Core Logic Supplementary Logic

Logic Facts Basic Ramification

‹ Facts ‹ Ramification

Graph Facts Graph Ramification

Supplementary Logic Facts

Supplementary ‹ Facts

Supplementary Graph Facts

Dependence Instantialization Choices

Figure 8. Infrastructure of ramification library

In other words, we get a full equivalence between a graph and its
“unfolded” structure, regardless of how many neighbors x has.

Both directions of this lemma are a little subtle. In the ñ
direction, the key difficulty is that we need to take the existentially-
quantified list of vertices on the left L and divide it into (not
necessarily disjoint) sublists L1, . . . , Ln such that Li is exactly
those vertices reachable from neighbor i. To construct these lists we
need to use the computable reachability lemma 1 to explicitly test,
for each neighbor i and v in L, whether i can reach v; accordingly
we require that the GeneralGraph be appropriately finite.

In theð direction, the difficulty is that if two nodes x ÞÑ γpxq
and x1 ÞÑ γpx1q are skewed, i.e. “partially overlapping” with
some—but not all—of x’s memory cells shared with x1, then the
� on the left hand side cannot separate them. To avoid skewing we
require x ÞÑ γpxq be alignable. A predicate P is alignable when

@x, y.
�
P pxq Y� P pyq $

�
P pxq ^ x � y

�
_
�
P pxq � P pyq

�	
In other words, either they are completely on top of one another or
they do not interfere at all. In a Java-like memory model such as in
HIP/SLEEK this property is automatic because pointers in such a
model always point to the root/beginning of an object. In contrast,
in a C-like memory model such as in VST/CompCert, this property
is not automatic because pointers can point anywhere. In such a
model, alignment is most easily enforced by storing graph nodes at
addresses that are multiples of an appropriate size (16 in Figure 1).

Some of our VST proofs do not use fold/unfold, instead pre-
ferring to use the lemmas in §4.3 directly. On the other hand, for
HIP/SLEEK fold/unfold is vital, and knowing that the recursive re-
lationship holds produces a pleasant feeling. We also prove a gen-
eral fold/unfold lemma for DAGs in which we get a � between the
root and its �

�
-joined neighbors rather than the Y� present in (5).

4.3 Ramification Libraries
We provide of our spatial development in Figure 8. Starting from
the bottom, notice that there are two underlying heap models: the
Step-Indexed Model, which is the main heap model used in VST,
and a much simpler Direct Model, which is used by HIP/SLEEK

among others. The Step-Indexed model is much fancier, but none
of our development depends on its bells and whistles.

To isolate our development from these unnecessary complica-
tions, and to ensure that HIP/SLEEK can reuse our spatial reason-
ing, we use two interfaces: Core Logic and Supplementary Logic.
Both models can instantiate both interfaces, but generally speaking
our VST proofs only need the Core properties to prove our exam-
ples, whereas HIP/SLEEK uses both Core and Supplemental. Each
interface defines some operators of separation logic and provides
some axioms about how they work. For example, � and ��� are in
Core Logic, along with the axiom pP $ Q ��� Rq ô pP �Q $ Rq.
On the other hand, the Y� and ��#� operators are in Supplementary
Logic, along with rules like P $ P Y� P .

Above the Logic layer we have three towers, each three levels
high. The leftmost tower is about basic lemmas about Logic, �,
and graph. For example, in the� Facts box we prove lemmas such
as the following:

AXB � H

�
xPA

P pxq � �
xPB

P pxq ô �
xPAYB

P pxq

The middle tower is more interesting in that it is entirely fo-
cused on ramification entailments. A robust library of ramification
entailments is essential to making ramification work smoothly in
practice. The lowest level contains lemmas such as the following:

RAMIFY-Q-SPLIT
G1 $ L1 � @x. pL2 ��� G2q G1

1 $ L1
1 � @x. pL

1
2 ��� G

1
2q

G1 �G
1
1 $ pL1 � L

1
1q � @x.

�
pL2 � L

1
2q ��� pG2 �G

1
2q
�

We use this lemma to break large ramification entailments into
more manageable pieces in a compositional way.

The middle level contains ramification lemmas about �, such
as the following:

AXB � H, A1 XB � H

�
xPAYB

P pxq $ �
xPA

P pxq �
�
�
xPA1

P pxq ��� �
xPA1YB

P pxq
	

(6)

The top level is focused on graph ramifications, such as the
following “update one node” lemma:

@x0 � x. γpx0q � γ1px0q
neighborspγ, xq � neighborspγ1, xq

graphpx, γq $ x ÞÑ γpxq �
�
x ÞÑ γ1pxq ��� graphpx, γ1q

�
(7)

This lemma was used on line 18 in Figure 1.
This layered structure enables proof reuse. All of the theorems

for graph are proved from the properties of iterated separating
conjunction, but having a modular library allows � to be reused
in other structures smoothly.

Also, all of our verifications of different graph algorithms use
the proof rules of graph at the top level in the library. Taking the
marking algorithm we introduced in §2 as an example, we prove

8 2016/7/20

1 t P1 u
2 c1
3 t P2 u
4 × t P3 u
5 c2;
6 t P4 u
7

8 ...
9

10

11

t P1 u
c1

t P2 u
t ?F � P3 u

c2;
t ?F � P4 u

...

t P1 u
c1

t P2 u
× t P3 u

c2;
t P4 u

c3;
Ö t P5 u
t P6 u

...

t P1 u
c1

t P2 u
t ?F � P3 u

c2;
t ?F � P4 u

c3;
t ?F � P5 u
t P6 u

...

Figure 9. Front and back ends of localize and unlocalize

the following theorem from the library:

n P neighborspγ, xq

graphpx, γq $
graphpn, γq �

�
@γ1.markpγ, n, γ1q ^ graphpn, γ1q ���

markpγ, n, γ1q ^ graphpx, γ1q
�

(8)

The Supplementary tower contains properties not used by most
of the VST examples. This includes the fold/unfold relationship
from §4.2, facts about precision, and so forth. As we will see in
§6, some of these properties are needed by HIP/SLEEK. Other
supplementary lemmas are mostly included for esthetic effect.

5. Ramification in VST
The Verified Software Toolchain is a series of machine-checked
modules written in Coq whose focus is reasoning about C pro-
grams (Appel et al. 2014), especially those programs that can be
compiled with the CompCert compiler (Leroy 2006). One of VST’s
modules, Floyd, is a separation-logic based engine to help users
verify concrete programs. The modules interlock so there are no
“gaps” in the end-to-end certified results; accordingly all of the
rules employed by Floyd have been proved sound with respect
to the underlying semantics used by CompCert. Floyd is writ-
ten in a combination of Ltac and Gallina and is designed to help
users verify the full functional correctness of their programs. Al-
though Floyd devotes considerable effort to make this task simpler,
it prefers expressibility and completeness to more automated tools
like HIP/SLEEK.

Floyd presents users with a pleasant “decorated program” vi-
sualization for Hoare proofs, in which users work from the top of
the program to the bottom even though the formal proof is main-
tained as applications of inference rules. For example, suppose the
proof goal is tP1u c1;c2 tP5u and VST’s user tells Floyd to apply a
Hoare rule for c1, e.g. tP1u c1 tP2u. Floyd will then automatically
apply the SEQUENCE rule and show the user tP2u c2 tP5u as the
remaining goal. When the user is in the middle of a verification, the
decorated program is partially done (i.e. the proof is finished from
the top to “the current program point”) and the inference tree is also
partially done (i.e. with holes that are represented by the remaining
proof goals in Coq).

5.1 The localize and unlocalize tactics
We wish to preserve this “decorated program” view while extend-
ing Floyd to support ramification. Our task therefore is to construct
a proof in Coq’s underlying logic that allows a localization block to
be constructed in this manner—that is, we wish to enter a localiza-
tion block without requiring the user to specify the “exit point” in
advance. The engineering is tricky because the proof Floyd is con-
structing (i.e. applications of inference rules) has holes in places
where the user’s “top to bottom” view of things has not yet arrived.

Figure 9 has four partially-decorated “proofs in progress”, from
both the user’s (front end) and Floyd’s (back end) points of view.

In the first column, from the user’s point of view, they saw the
assertion P2 (line 3) and decided to use the localize tactic to
zoom into P3 (line 4). They then applied some proof rules to move
past c2 to reach the assertion P4 (line 6). At this point, Floyd does
not know when the corresponding unlocalize tactic will execute,
so it does not know how which commands will be inside the block
or what the final local and global postconditions will be.

Accordingly, the localize tactic builds an incremental proof
in the underlying program logic by applying FRAME with an unin-
stantiated metavariable. The second column of Figure 9 shows the
back end with the unknown frame ?F , which will eventually be
instantiated by unlocalize.

In the third column, the user has advanced past c3 to reach
the local postcondition P5 and now wishes to unlocalize to P6.
Afterwards, the internal state looks like the fourth column, and
so to a first approximation, unlocalize can instantiate ?F with
Jc2;c3KpP5 ��� P6q. In fact, as discussed in §2.3, unlocalize re-
places P5 and P6 with equivalent P 1

5 and P 1
6 that use existentials to

pack up modified program variables, and then instantiates ?F with
a version of Jc2;c3KpP5 ��� P6q in which those same modified
program variables have been replaced with universally-quantified
metavariables. Reformulating assertions to isolate program vari-
ables is aided by Floyd’s use of a canonical form for assertions that
explicitly separates assertions containing program variables from
spatial assertions.

As indicated in §2.3, this leaves two proof goals. The first,
P2 $?F � P3, is simplified to remove the Jc2;c3K and referred
to the user as a new obligation; most often the user solves it using a
ramification library (§4.3). The second, ?F $ P 1

5 ��� P
1
6, is solved

automatically by unlocalize.

5.2 Additional examples in VST

In Figure 10 we show a simplified proof script for the spanning
tree algorithm. We have also verified mark for DAGs and copy

for graphs. For the sake of space, we do not put these decorated
program scripts here.

Unlike graph marking, the spanning tree algorithm changes the
structure of the graph, leading to a more complicated specification,
in both the pure part and the spatial part. Observe that the span
relation is rather long; the e_span handles the case of either calling
spanning tree or deleting an edge.

6. Ramification in HIP/SLEEK
HIP/SLEEK is a toolset for verifying programs using separation
logic (Chin et al. 2010). As compared to VST, H/S has a heavier
focus on automation: for example, users need only specify loop in-
variants and the pre/postconditions of methods, rather than describ-
ing each program point. H/S has two interlocking components. HIP
applies Hoare rules using forward reasoning to verify programs,
i.e. each entailment is of the form P $ Q � R, where the heap
from the antecedent P is matched with the consequent Q and a
frame/residue R. To check these separation logic entailments and
calculate R, HIP calls SLEEK. SLEEK handles spatial operators
such as � and ÞÑ before handing any remaining pure entailments
to a variety of external solvers such as Z3. One of H/S’s distin-
guishing features is support for user-defined recursive predicates.
HIP/SLEEK has been used to verify programs manipulating data
structures like lists, arrays, and trees.

6.1 Verifying mark in HIP/SLEEK

Figure 11 gives most of the HIP/SLEEK file used to verify mark

(we have elided about 15 lines to save space). We specify the pre-
and postcondition of mark in line 33 and 34) respectively; notice
that this is the same specification we verified in VST in Figure 1.
It is quite unusual for H/S to verify the full functional correctness

9 2016/7/20

1 struct Node {
2 int m;
3 struct Node * l;
4 struct Node * r; };
5

6 // We use R to represent reachablepγ, xq
7

8 void spanning(struct Node * x) {// tgraphpx, γq ^ γpxq.1 � 0u
9 struct Node * l, * r; int root_mark;

10 // tgraphpx, γq ^ Dl, r. γpxq � p0, l, rqu
11 // tgraphpx, γq ^ γpxq � p0, l, rqu
12 // tvertices_atpreachablepγ, xq, γq ^ γpxq � p0, l, rqu
13 // tvertices_atpR, γq ^ γpxq � p0, l, rqu
14 // × tx ÞÑ 0, l, r ^ γpxq � p0, l, rqu
15 l = x -> l;
16 r = x -> r;
17 x -> m = 1;
18 // Ö tx ÞÑ 1, l, r^ γpxq � p0, l, rq ^ Dγ1. mark1 pγ, x, γ1qu
19 // tDγ1. vertices_atpR, γ1q ^ γpxq � p0, l, rq ^mark1 pγ, x, γ1qu
20 // tvertices_atpR, γ1q ^ γpxq � p0, l, rq ^mark1 pγ, x, γ1qu
21 if (l) {
22 root_mark = l -> m;
23 if (root_mark == 0) {
24 spanning(l);
25 } else { x -> l = 0; } }

26 //

"
Dγ2. vertices_atpR, γ2q ^ γpxq � p0, l, rq ^
mark1 pγ, x, γ1q ^ e_spanpγ1, x.L, γ2q

*

27 //

"
vertices_atpR, γ2q ^ γpxq � p0, l, rq ^
mark1 pγ, x, γ1q ^ e_spanpγ1, x.L, γ2q

*

28 if (r) {
29 root_mark = r -> m;
30 if (root_mark == 0) {
31 spanning(r);
32 } else { x -> r = 0; } }

33 //

"
Dγ3. vertices_atpR, γ3q ^ γpxq � p0, l, rq ^
mark1 pγ, x, γ1q ^ e_spanpγ1, x.L, γ2q ^ e_spanpγ2, x.R, γ3q

*

34 } // tDγ3. vertex_atpreachablepγ, xq, γ3q ^ spanpγ, x, γ3qu

vertices_atpreachablepγ1, xq, γ2q
∆
� �
vPreachablepγ1,xq

v ÞÑ γ2pvq

spanpγ1, x, γ2q
∆
�markpγ1, x, γ2q ^ γ1 Ò pλv.x

γ1

;�
0 vq is a tree

γ1 Òpλv. x
γ1

;�
0 vq � γ2 Òpλv. x

γ1

;�
0 vq ^

p@v. x
γ1

;�
0 v ñ γ2 |ù x; vq ^

p@a, b. x
γ1

;�
0 añ x

γ1

;�
0 bñ γ2 |ù a; bq

e_spanpγ1, e, γ2q
∆
�

#
γ1 � e � γ2 tpγ1, eq � 1

spanpγ1, tpγ1, eq, γ2q tpγ1, eq � 0

Figure 10. Clight code and proof sketch for bigraph spanning tree.

of an algorithm since its focus on heavier automation tends to trade
off proving very exact specifications (e.g. H/S proofs about lists
usually treat their values as multisets instead of sequences). We do
not give H/S any “hints” at intermediate program points.

Line 1 defines the recursive data structure node and lines 19–21
use H/S’s normal user-defined recursive predicate feature to define
the graph predicate. H/S uses the keyword self to refer to the
object being defined; in other words H/S’s definition is very close
to the fold/unfold relationship given as equation (1) in Figure 1 and
we can justify its soundness as in §4.2. H/S uses the :: operator
for ÞÑ and to provide the root pointer for a recursive predicate, U*
for Y� and automatically quantifies free variables existentially. H/S

1 data node { int val; node left; node right; }
2

3 relation lookup(abstract G, node x,
4 int d, node l, node r).
5 relation update(abstract G, node x, int d,
6 abstract G1).
7 relation mark(abstract G, node x, abstract G1).
8 relation
9 subset_reach(abstract G, node x, abstract G1).

10 relation
11 eq_notreach(abstract G, node x, abstract G1).
12

13 axiom lookup(G,x,1,l,r) ==> mark(G,x,G).
14 axiom mark(G,x,G1) & lookup(G,y,v,l,r) ==>
15 subset_reach(G,x,G1) & eq_notreach(G,x,G1) &
16 lookup(G1,y,_,l,r).
17 // ... other axioms elided ...
18

19 graph<G> == self = null or
20 self::node<v,l,r> U* l::graph<G> U* r::graph<G>
21 & lookup(G,self,v,l,r);
22

23 rlemma "subgraphupdate_l" l::graph<G1> *
24 (l::graph<G> --@ (x::node<v,l,r> U*
25 (l::graph<G> U* r::graph<G>))) &
26 subset_reach(G,l,G1) & eq_notreach(G,l,G1)
27 & lookup(G,x,v,l,r) & lookup(G1,x,v1,l,r)
28 -> x::node<v1,l,r> U*
29 (l::graph<G1> U* r::graph<G1>);
30 // ... other ramification lemmas elided ...
31

32 void mark(node x)
33 requires x::graph<G>
34 ensures x::graph<G1> & mark(G,x,G1); {
35 node l, r;
36 if (x == null) return;
37 else {
38 if (x.val == 1) return;
39 l = x.left;
40 r = x.right;
41 x.val = 1;
42 mark(l);
43 mark(r);
44 } }

Figure 11. Bigraph marking in HIP/SLEEK

does not need alignment restrictions because it enjoys a Java-like
memory model with objects and fields: i.e. it is not possible to have
a pointer pointing into the “middle” of a record. The last line of
the graph predicate definition (21) includes the lookup abstract
relation. In Figure 1, this would be written γpselfq � pv, l, rq.

6.2 Externally-verified lemmas

To implement ramifications in HIP/SLEEK we extended its lemma
system (Nguyen and Chin 2008). Normal lemmas in H/S are user
defined, automatically checked, and automatically applied in pro-
gram verifications. In contrast, our new lemmas are still user de-
fined and still automatically applied in program verifications, but
not automatically checked, so we call them externally verified lem-
mas; their key advantage is that they can be much more complex
than the lemmas H/S can check automatically. Instead of check-
ing the lemmas automatically, H/S outputs a Coq Module Type that
states the lemmas H/S needed in the verification. Users then imple-
ment a matching Module to get a fully-verified result.

The first step to adding more general kinds of lemmas is to
add a notion of abstract relations; the relations used by the mark

verification are given in lines 3–11. We have already met lookup;

10 2016/7/20

lines 5 and 7 are how H/S models mark1 and mark , respectively.
Users do not provide any definitions for these relations, but we do
give H/S some axioms for how they behave: e.g. line 13 contains
tells H/S that if the root of a graph is marked then we can consider
the whole graph marked. This axiom is used on line 38 to safely
return once we encounter an already-marked node. Users also
provide spatial ramification rules as in lines 23–29.

6.3 Automatic ramification

HIP/SLEEK reasons about graph algorithms using three key ideas.
First, H/S uses fold/unfold relationships whenever it needs to rea-
son about a recursive predicate during the entailment checking that
occurs during forward reasoning. For example, to check the deref-
erence in line 38, the x::graph<G> predicate is unfolded to reach4

Dm, l, r. γpxq�pm, l, rq^x ÞÑm, l, rY� graphpl, γqY� graphpr, γq

Second, once HIP/SLEEK realizes that its forward reasoning
needs to isolate a predicate that is Y�-shared, it uses the existential
wand “septraction” operator ��#� (defined in Figure 2) to reach
the strongest post condition. The existential wand ��#� is simpler
to introduce than the universal one ��� during forward reasoning
because H/S already knows G1 and L1 when it needs to calculate
a residual frame R. For example, the precondition at line 42 is

γpxq � p0, l, rq ^mark1 pγ, x, γ1q ^
x ÞÑ 1, l, rY� graphpl, γ1q Y� graphpr, γ1q

and since H/S knows the call to mark(l) requires graphpl, γ1q, it
can calculate the frame residue R as Q ��#� P since it knows that5

Phkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkj
x ÞÑ 1, l, rY� graphpl, γ1q Y� graphpr, γ1q $

Qhkkkkkkikkkkkkj
graphpl, γ1q ��

graphpl, γ1q ��#�
�
x ÞÑ 1, l, rY� graphpl, γ1q Y� graphpr, γ1q

�	
looomooon

R

Note that in generalP $ Q�pQ ��#� P q is not a tautology since not
every P has aQ “hiding inside it”. However, H/S’s unfold of graph
makes it readily apparent that graphpl, γq is inside the premise of
the entailment P , so H/S is justified in calculating the frame R.

To calculate the postcondition of line 42, H/S takes the residueR
and �-combines it with the postcondition of the mark(l) call, i.e.:�
graphpl,γ2q^markpγ1,l,γ2q

�
�γpxq�p0,l,rq^mark1 pγ,x, γ1q

^
�
graphpl, γ1q ��#�

�
x ÞÑ 1, l, rY� graphpl, γ1q Y� graphpr, γ1q

�	
The third and final step is to use lemmas to eliminate the ��#�

operator. After line 42 H/S uses the lemma from lines 23–29:��
graphpl, γq ��#�

�
x ÞÑ m, l, r Y� graphpl, γq Y� graphpr, γq

�	
� graphpl, γ1q ^ subset_reachpγ, l, γ1q ^ eqnot_reachpγ, l, γ1q

^ γpxq � pm, l, rq ^ γ1pxq � pm1, l, rq

ñ�

x ÞÑ m1, l, r Y� graphpl, γ1q Y� graphpr, γ1q
�

Note that this lemma does not mention mark explicitly, allowing
it to be reused in other algorithms. The connection between the
mark , subset_reach , and eqnot_reach relations is given by the
axiom on lines 14–16; other (elided) lemmas connect mark1 as
well. H/S must apply all of them, guided by structural matching, to
eliminate the��#� to reach the following relatively pleasant-looking

4 We will write predicates in a more conventional mathematical style rather
than the ASCII format used by H/S.
5 We omit pure conjuncts e.g. mark1 pγ, x, γ1q from both P and R.

1 Module Type Mgraphmark.
2 ...
3 Parameter G : Type.
4 Parameter node : Type.
5 Parameter graph : node -> G -> formula.
6 Parameter mark : G -> node -> G -> formula.
7 ...
8 Axiom axiom_3 : forall l r x G,
9 valid (imp (lookup G x true l r) (mark G x G)).

10 ...
11 Axiom subgraphupdate_l : forall G v G1 x v1 l r,
12 valid (imp (and (star (graph l G1)
13 (mwand (graph l G) (union (ptto_node x v l r)
14 (union (graph l G) (graph r G)))))
15 (and (subset_reach G l G1) (and
16 (eq_notreach G l G1) (and (lookup G x v l r)
17 (lookup G1 x v1 l r)))))
18 (union (ptto_node x v1 l r) (union (graph l G1)
19 (graph r G1)))).
20 ...
21 End Mgraphmark.

Figure 12. Coq Module Type generated by HIP/SLEEK

postcondition of line 42

γpxq � p0, l, rq ^mark1 pγ, x, γ1q ^markpγ1, l, γ2q ^
x ÞÑ 1, l, rY� graphpl, γ2q Y� graphpr, γ2q

H/S now continues the verification with the next command mark(r).

6.4 Generating the Coq module type
The lemmas and axioms that HIP/SLEEK has used in the verifica-
tion still need to be checked. Accordingly, HIP/SLEEK generates a
Coq file with a Module Type specifying them. The Module Type

generated for mark is given in Figure 12 to illustrate this process.
To obtain a complete verification for mark, users must build a Coq
Module that satisfies Mgraphmark using definitions for the abstract
relations that they think are reasonable (in particular, for the mark

relation, since it is used in the specification of the algorithm).

6.5 Consequences of HIP/SLEEK’s style of reasoning
HIP/SLEEK’s style of reasoning has a few consequences for how
we proceed. First, H/S’s use of the fold/unfold relationship means
that we need the “supplementary” package from the ramification
library (§4.3) to enable it. Second, H/S’s use of the existential
wand ��#� means we need to convert our ��� ramification lemmas
to contain��#�. Fortunately this is easy, assuming L1 is precise:

WANDTOEWAND
G1 $ L1 � pL2 ��� G2q

pL1 ��#� G1q � L2 $ G2
precisepL1q

The supplementary package proves that the graph predicate is
“precise”, so all of our graph ramification lemmas work without
additional effort. Accordingly, to provide the Module implementing
Mgraphmark not burdensome, especially starting from a working
Floyd proof that uses the same mathematical relations.

7. Statistics related to our development
All of our results in this paper have been machine-checked. The
vast bulk of our development was checked in Coq, although a
55-line file (shown in Figure 11) was checked in HIP/SLEEK.
Our modifications to HIP/SLEEK itself were not machine-checked
since HIP/SLEEK does not have a mechanized soundness proof.
Although the size of a development does not perfectly match with

6 H/S files modified here is not necessarily fresh created.

11 2016/7/20

Component Number of files Size (in lines)
Math Graph (§3) 19 12,628

Spatial Graph ($4) 12 7,337
Integration into Floyd (§5) 12 1,917
Modifications to H/S (§6) 516 2,500

VST Examples (§5.2) 13 3,253
H/S Example (§6) 2 429

Memory Model & Logic 13 2,395
Common Utilities 10 3,085
Total Development 132 33,544

Table 1. Size of our codebase

that development’s importance or implementation difficulty, we
present it nonetheless in Table 1, organized roughly by the paper
section corresponding to each development. It took fewer than 400
lines of Coq to verify the mark algorithm in HIP/SLEEK, indicating
that a large portion of the codebase is shared between VST and H/S.

8. Related work
Comparison with Hobor and Villard. The most direct ancestor
of our work is (Hobor and Villard 2013), which focused on ver-
ifying graph algorithms using and introduced the RAMIFY rule.
We have generalized this rule to better handle modified program
variables and existential quantifiers in postconditions; they hacked
their way around these issues by proposing a variant of RAMIFY
called RAMIFYASSIGN, which could reason about the special case
of a single assignment x=fp. . .q, assuming the verifier can make the
local program translation to x’=fp. . .q; x=x’, where x’ is fresh.
They proposed no way to verify unmodified program code, to mod-
ify program variables inside nested localization blocks, or to do a
ramification across multiple assignments as we do in lines 16–20 of
figure 1. Hobor and Villard avoided existentials in localized post-
conditions because they defined all of their mathematical opera-
tions (e.g. mark , mark1) as functions rather than as relations.

Hobor and Villard treated mathematical graphs very simply,
as triples pV,E, Lq of vertices, edges, and a labeling function on
vertices. Vertices had no more than two neighbors. In contrast, our
mathematical graph framework (§3) is very modular and general
and has been tuned to work smoothly in a mechanized context.

Hobor and Villard fell into the trap of defining spatial graphs
recursively (§4.1); unfortunately other members of the research
community have since followed them in. We exposed this error
and provided a sound and quite general definition for graph (§4.2)
that recovers fold/unfold reasoning. We developed a much more
general and more modular set of related lemmas and connect our
spatial reasoning to two very different verification tools (§4.3),
VST (§5) and HIP/SLEEK (§6). Our development is entirely
machine-checked (§7) whereas they used only pen and paper.

Other verification of graph algorithms, with or without Y�.
Yang’s verification of the Schorr-Waite algorithm is a landmark
in the early separation logic literature (Yang 2001). Bornat et al.
gave an early attempt to reason about graph algorithms in separa-
tion logic in a more general way (Bornat et al. 2004).

Reynolds was the first to document the overlapping conjunc-
tion Y�, although he did not present any strategy to reason about it
using Hoare rules (Reynolds 2003). Gardner et al. were the first to
reason about a program usingY� in Javascript (Gardner et al. 2012).
Raad et al. usedY� to reason about a concurrent spanning algorithm
using a kind of “concurrent localization” (Raad et al. 2015). Sergey
et al. also verified a concurrent spanning tree algorithm and mech-
anized their proofs in Coq (Sergey et al. 2015).

Almost a decade after Yang verified Schorr-Waite on paper,
Dafny automated its verification (Leino 2010).

Local variables. An alternative way to avoid local variable is-
sues is to use “variables as resource” (Bornat et al. 2006). How-
ever, most mechanized verification systems do not use variables as
resource (Beckert et al. 2007; Distefano and Parkinson 2008; Chin
et al. 2010; Leino 2010; Bengtson et al. 2012; Appel et al. 2014).

Verification tools. Our work heavily interacts with the Floyd (Ap-
pel et al. 2014) and HIP/SLEEK (Chin et al. 2010) verification
tools. Like Floyd, Charge! uses Coq tactics to work with a shallow
embedding of higher order separation logic, but focuses on OO
programs written in Java/C# (Bengtson et al. 2012). A more auto-
mated approach to verification of low level programs using Coq is
implemented in the Bedrock framework (Chlipala 2011).

Many automated verification tools also use separation logic in
a forward reasoning style as does HIP/SLEEK, including Small-
foot (Berdine et al. 2005), jStar (Distefano and Parkinson 2008),
and Verifast (Jacobs et al. 2011). One of HIP/SLEEK’s distinguish-
ing features is good support for user-defined inductive predicates
rather than a library of pre-defined predicates for lists, trees etc.

Dafny (Leino 2010) and KeY (Beckert et al. 2007) are two no-
table verifiers not based on separation logic; KeY uses an inter-
active verifier while Dafny pursues more automation by using the
SMT solver Z3 (de Moura and Bjørner 2008).

Mechanized mathematical graph theory. There is a long his-
tory, going back at least 25 years, of mechanized reasoning about
mathematical graphs (Wong 1991). The most famous mechanically
verified “graph theorem” is the Four Color Theorem (Gonthier
2005); however the development actually uses hypermaps instead
of graphs. Noschinski built a graph library in Isabelle/HOL whose
formalization is the most similar to ours (Noschinski 2015a), e.g.
supporting graphs with labeled and parallel arcs.

Noschinski and Dubois et al. used proof assistants to design
verifiable checkers for solutions to graph problems (Noschinski
2015b; Dubois et al. 2015). Yamamoto et al. and Bauer and Nipkow
use an alternative inductive encoding of graphs to formalize planar
graph theory (Yamamoto et al. 1995; Bauer and Nipkow 2002).

9. Future work and conclusion
In the future we plan to improve the pure reasoning of graphs
and similar data structures. We plan to verify a garbage collector
algorithm for the “CertiCoq” project, which is building a certified
compiler from Gallina to Clight. We would like to investigate
using our externally verified lemmas in HIP/SLEEK to verify code
such as fast exponentiation and more graph algorithms. We also
would like to make the interface between Coq and HIP/SLEEK
simpler and cleaner. One final direction we would like to investigate
is using our new connection to Coq to have HIP/SLEEK output
certificates as it verifies programs so that the system becomes more
trustworthy.

Our main contributions were as follows. We generalized the
RAMIFY rule to handle modified program and existential quanti-
fiers in postconditions more smoothly. We developed a general and
modular framework for reasoning about mathematical graphs and
a general and modular spatial library for reasoning about graphs
in the heap. We provided a sound definition for graph that still
obeyed the fold/unfold relationship. We connected our reasoning
to two verification tools and used them to verify several graph-
manipulating algorithms.

Acknowledgements. This material was based in part on research
supported by Yale-NUS College and R-607-265-045-121. All opin-
ions expressed in this work are solely those of the authors.

This material is based in part on research sponsored by DARPA
under agreement number FA8750-12-2-0293. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon.

12 2016/7/20

The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.

References
A. W. Appel and D. McAllester. An indexed model of recursive types for

foundational proof-carrying code. ACM Transactions on Programming
Languages and Systems, 23(5):657–683, 2001.

A. W. Appel, P.-A. Melliès, C. D. Richards, and J. Vouillon. A very modal
model of a modern, major, general type system. In Proceedings of
the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’07), pages 109–122, Jan. 2007.

A. W. Appel, R. Dockins, A. Hobor, L. Beringer, J. Dodds, G. Stewart,
S. Blazy, and X. Leroy. Program Logics for Certified Compilers. Cam-
bridge University Press, New York, NY, USA, 2014. ISBN 110704801X,
9781107048010.

G. Bauer and T. Nipkow. The 5 colour theorem in isabelle/isar. In
International Conference on Theorem Proving in Higher Order Logics,
pages 67–82. Springer, 2002.

B. Beckert, R. Hähnle, and P. H. Schmitt. Verification of Object-oriented
Software: The KeY Approach. Springer-Verlag, Berlin, Heidelberg,
2007. ISBN 3-540-68977-X, 978-3-540-68977-5.

J. Bengtson, J. B. Jensen, and L. Birkedal. Charge! - A framework for
higher-order separation logic in coq. In Interactive Theorem Proving -
Third International Conference, ITP 2012, Princeton, NJ, USA, August
13-15, 2012. Proceedings, pages 315–331, 2012.

J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic
assertion checking with separation logic. In FMCO, pages 115–137,
2005.

S. Blazy and X. Leroy. Mechanized semantics for the clight subset of the C
language. J. Autom. Reasoning, 43(3):263–288, 2009.

R. Bornat, C. Calcagno, and P. O’Hearn. Local reasoning, separation and
aliasing. In SPACE, volume 4, 2004.

R. Bornat, C. Calcagno, and H. Yang. Variables as resource in separation
logic. ENTCS, 155:247–276, 2006.

W. N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated verification of
shape, size and bag properties via user-defined predicates in separation
logic. Science of Computer Programming, 77(9):1,006–1,036, 2010.

A. Chlipala. Mostly-automated verification of low-level programs in com-
putational separation logic. In Proceedings of the 32nd ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 234–245,
2011.

A. Chlipala. Certified Programming with Dependent Types - A Pragmatic
Introduction to the Coq Proof Assistant. MIT Press, 2013. ISBN
978-0-262-02665-9. URL http://mitpress.mit.edu/books/
certified-programming-dependent-types.

L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems, 14th In-
ternational Conference, TACAS 2008, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2008, Bu-
dapest, Hungary, March 29-April 6, 2008. Proceedings, pages 337–340,
2008. doi: 10.1007/978-3-540-78800-3_24. URL http:
//dx.doi.org/10.1007/978-3-540-78800-3_24.

D. Distefano and M. J. Parkinson. jstar: towards practical verification for
java. In Proceedings of the 23rd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2008, October 19-23, 2008, Nashville, TN, USA, pages 213–
226, 2008. doi: 10.1145/1449764.1449782. URL http://
doi.acm.org/10.1145/1449764.1449782.

C. Dubois, S. Elloumi, B. Robillard, and C. Vincent. Graphes et couplages
en coq. In Vingt-sixièmes Journées Francophones des Langages Appli-
catifs (JFLA 2015), 2015.

R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Proceedings of the Symposium on Applied Mathematics, volume 19,
pages 19–32. AMS, 1967.

P. Gardner, S. Maffeis, and G. D. Smith. Towards a program logic for
javascript. In Proceedings of the 39th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2012, Philadel-
phia, Pennsylvania, USA, January 22-28, 2012, pages 31–44, 2012.
doi: 10.1145/2103656.2103663. URL http://doi.acm.
org/10.1145/2103656.2103663.

G. Gonthier. A computer-checked proof of the four colour theorem, 2005.
A. Hobor and J. Villard. The ramifications of sharing in data structures.

In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’13), pages 523–536,
2013.

B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens. Verifast: A powerful, sound, predictable, fast verifier for
C and java. In NASA Formal Methods - Third International Symposium,
NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings, pages
41–55, 2011.

K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. In Logic for Programming, Artificial Intelligence, and
Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal,
April 25-May 1, 2010, Revised Selected Papers, pages 348–370, 2010.
doi: 10.1007/978-3-642-17511-4_20. URL http://dx.
doi.org/10.1007/978-3-642-17511-4_20.

X. Leroy. Formal certification of a compiler back-end or: programming
a compiler with a proof assistant. In Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2006, Charleston, South Carolina, USA, January 11-13,
2006, pages 42–54, 2006.

H. H. Nguyen and W. Chin. Enhancing program verification with lem-
mas. In Computer Aided Verification, 20th International Conference,
CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings, pages
355–369, 2008. doi: 10.1007/978-3-540-70545-1_34. URL
http://dx.doi.org/10.1007/978-3-540-70545-1_34.

L. Noschinski. A graph library for isabelle. Mathematics in Com-
puter Science, 9(1):23–39, 2015a. ISSN 1661-8289. doi: 10.1007/
s11786-014-0183-z. URL http://dx.doi.org/10.1007/
s11786-014-0183-z.

L. Noschinski. Formalizing Graph Theory and Planarity Certificates. PhD
thesis, Universität München, 2015b.

A. Raad, J. Villard, and P. Gardner. Colosl: Concurrent local subjec-
tive logic. In Programming Languages and Systems - 24th European
Symposium on Programming, ESOP 2015, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS
2015, London, UK, April 11-18, 2015. Proceedings, pages 710–735,
2015. doi: 10.1007/978-3-662-46669-8_29. URL http:
//dx.doi.org/10.1007/978-3-662-46669-8_29.

J. C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS, pages 55–74, 2002.

J. C. Reynolds. A short course on separation logic. http:
//www.cs.cmu.edu/afs/cs.cmu.edu/project/fox-19/
member/jcr/wwwaac2003/notes7.ps, 2003.

I. Sergey, A. Nanevski, and A. Banerjee. Mechanized verification of fine-
grained concurrent programs. In PLDI, pages 77–87, 2015.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

W. Wong. A simple graph theory and its application in railway signaling. In
HOL Theorem Proving System and Its Applications, 1991., International
Workshop on the, pages 395–409, Aug 1991. doi: 10.1109/HOL.
1991.596304.

M. Yamamoto, S.-y. Nishizaki, M. Hagiya, and Y. Toda. Formalization
of planar graphs. In International Conference on Theorem Proving in
Higher Order Logics, pages 369–384. Springer, 1995.

H. Yang. Local Reasoning for Stateful Programs. PhD thesis, University of
Illinois, 2001.

13 2016/7/20

http://mitpress.mit.edu/books/certified-programming-dependent-types
http://mitpress.mit.edu/books/certified-programming-dependent-types
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/1449764.1449782
http://doi.acm.org/10.1145/1449764.1449782
http://doi.acm.org/10.1145/1449764.1449782
http://dx.doi.org/10.1145/2103656.2103663
http://doi.acm.org/10.1145/2103656.2103663
http://doi.acm.org/10.1145/2103656.2103663
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-540-70545-1_34
http://dx.doi.org/10.1007/978-3-540-70545-1_34
http://dx.doi.org/10.1007/s11786-014-0183-z
http://dx.doi.org/10.1007/s11786-014-0183-z
http://dx.doi.org/10.1007/s11786-014-0183-z
http://dx.doi.org/10.1007/s11786-014-0183-z
http://dx.doi.org/10.1007/978-3-662-46669-8_29
http://dx.doi.org/10.1007/978-3-662-46669-8_29
http://dx.doi.org/10.1007/978-3-662-46669-8_29
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/fox-19/member/jcr/wwwaac2003/notes7.ps
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/fox-19/member/jcr/wwwaac2003/notes7.ps
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/fox-19/member/jcr/wwwaac2003/notes7.ps
http://dx.doi.org/10.1109/HOL.1991.596304
http://dx.doi.org/10.1109/HOL.1991.596304

	Introduction
	Localizations
	Frames and ramifications are localizations
	The program variable bugaboo
	The existential ogre
	Soundness of our rules

	A framework for graph theory
	Structure of the mathematical graph framework
	Graph plugins
	Reasoning about relations between graphs

	Defining and reasoning about spatial graphs
	Traditional fixpoints fail to define good graph predicates
	Defining a good graph predicate
	Ramification Libraries

	Ramification in VST
	The /localize/ and /unlocalize/ tactics
	Additional examples in VST

	Ramification in HIP/SLEEK
	Verifying /mark/ in HIP/SLEEK
	Externally-verified lemmas
	Automatic ramification
	Generating the Coq module type
	Consequences of HIP/SLEEK's style of reasoning

	Statistics related to our development
	Related work
	Future work and conclusion

